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Stereoselectivity in organic synthesis
• Stereospecific reactions - a reaction where the mechanism means the 

stereochemistry of the starting material determines the stereochemistry of the 
product; there is no choice! e.g. SN2 reactions

• Stereoselective reactions - a reaction where one stereoisomer of a product is 
formed preferentially over another.  The mechanism does not prevent the formation 
of two or more stereoisomers but one predominates.

• Diastereoselective reactions - a stereogenic centre is introduced into a molecule in 
such a way that diastereoisomers are produced in unequal amounts
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• Enantioselective reactions - a reaction that produces two enantiomers of a
...product in unequal amounts
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Stereoselective reactions
Nucleophilic addition to C=O

• Reaction of a nucleophile with a chiral substrate gives two possible diastereoisomers
• Reaction is stereoselective if one diastereoisomer predominates
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Prochiral Nomenclature
• Trigonal carbons that are not stereogenic centres but can be made into them are prochiral
• Each face can be assigned a label based on the CIP rules
• If the molecule is chiral (as above) the faces are said to be diastereotopic
• If the molecule is achiral (as below) the faces are enantiotopic 

% de = diastereisomeric excess = [major] – [minor]

[major] + [minor]

= %major – %minor
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Felkin-Ahn model

• The diastereoselectivity can be explained and predicted via the Felkin-Ahn model
• It is all to do with the conformation of the molecule...
• Easiest to understand if we look at the Newman projection of the starting material
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• Rotate around central bond so that substituents are staggered

• Two favoured as largest substituent (Ph) furthest from O & H
• Continue to rotate around central bond and find 6 possible conformations
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Felkin-Ahn model II

• As a result of the Bürghi-Dunitz (107°) angle there are four possible trajectories for 
the nucleophile to approach the most stable conformations

• Three are disfavoured due to steric hindrance of Ph or Me
• Therefore, only one diastereoisomer is favoured
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Felkin-Ahn model IV

• To explain or predict the stereoselectivity of nuclophilic addition to a carbonyl group 
with an adjacent stereogenic centre, use the Felkin-Ahn model

• Draw Newman projection with the largest substituent (L) perpendicular to the C=O
• Nucleophile (Nu) will attack along the Bürghi-Dunitz trajectory passed the least 

sterically demanding (smallest, S) substituent
• Draw the Newman projection of the product
• Redraw the molecule in the normal representation

• Whilst the Felkin-Ahn model predicts the orientation of attack, it does not give any 
information about the degree of selectivity

• Many factors can affect this...
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Diastereoselective addition to carbonyl group

• The size of the nucleophile greatly effects the diastereoselectivity of addition
• Larger nucleophiles generally give rise to greater diastereoselectivities
• Choice of metal effects the selectivity as well, although this may just be a steric effect

• The size of substituents on the substrate will also effect the diastereoselectivity
• Again, larger groups result in greater selectivity

• Should be noted that larger substituents normally result in a slower rate of reaction
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Effect of electronegative atoms

• It is hard to justify the excellent selectivity observed above using simple sterics 
• The Bn2N group must be perpendicular to C=O but a second factor must explain why 

the selectivity is so high (& the reaction much faster than previous examples)
• There is an electronic effect
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• Overlap results in a new, lower energy orbital, more susceptible to nucleophilic attack
• Thus if electronegative group perpendicular, C=O is more reactive
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• When an electronegative group is perpendicular to the C=O it is possible to get an
...overlap of the π* orbital and the σ* orbital 
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Effect of electronegative atoms II

• A good example of the previous effect is shown on the left hand-side
• But as always, chemistry not that simple...
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• If heteroatom (Z) is capable of coordination and...
...a metal capable of chelating 2 heteroatoms is present we observe chelation control
• Metal chelates carbonyl and heteroatom together
• This fixes conformation
• Such reactions invariably occur with greater selectivity
• Reactions are considerably faster
• The chelating metal acts as a Lewis acid and activates the carbonyl group to attack
• As shown, chelation can reverse selectivity!
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Chelation control

• Chelation controlled additions are easy to predict
• Normally do not need to draw Newman projection (yippee!)
• Simple example shown below
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Chelation control II

• Example shows normal Felkin-Ahn selectivity gives one diastereoisomer
• Electronegative and bulky phosphorus group in perpendicular position
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• Chelation control gives opposite diastereoisomer
• Chelation can occur through 6-membered ring
• Lower temperature typical of activated, chelated carbonyl
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Felkin-Ahn control in total synthesis

• An example of the Sakurai reaction from the synthesis of preswinholide A
• Preswinholide A is effectively the monomer of swinholide A (the dimer), a compound 

displaying potent cytotoxic activity that was isolated from a Red Sea sponge
• Ian Paterson, Richard A. Ward, Julian D. Smith, John G. Cumming and Kap-Sun 

Yeung, Tetrahedron, 1995, 51, 9437
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Chelation control in total synthesis

• An example of the Mukaiyama aldol reaction
• Comes from the synthesis of canadensolide, a fungicidal agent
• Yung-Son Hon & Cheng-Han Hsieh, Tetrahderon, 2006, 62, 9713
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